

The GLAST Burst Monitor

<u>Purpose:</u> To augment the GLAST capabilities for studying gamma-ray bursts by providing extended spectral response and on-board locations to allow repointing the LAT.

Institutions:

Marshall Space Flight Center, Max Planck Institute for Extraterrestrial Physics, University of Alabama, Huntsville.

Principal Investigator:

Dr. Charles Meegan, MSFC

Co-Principal Investigator:

Dr. Giselher Lichti, MPE

http://gammaray.msfc.nasa.gov/gbm/

Additional Key Personnel

™ MSFC

- Dr. Gerald Fishman
- **I** Mr. Stephen Elrod (Project Manager)

™ UAH

- **I** Dr. Michael Briggs
- I Dr. Marc Kippen
- I Dr. Robert Mallozzi
- I Dr. William Paciesas
- Dr. Robert Preece

™ MPE

- Dr. Roland Diehl
- I Dr. Robert Georgii
- Dr. Andreas von Kienlin
- Prof. Dr. Volker Schoenfelder

Burst Monitor Approach

- **™** Place main emphasis on the unique capability of GLAST for spectral observations.
- ™ Have very large FOV (>>LAT) to allow repointing of the LAT.
- [™] Use array of twelve 5" by 0.5" NaI detectors to locate GRBs (as with BATSE) and get low energy spectrum.
- ™ Use two 5" by 5" BGO detectors to obtain broad spectral coverage.

GBM Detector Concept

Burst Locations

™ On-Board

- Available in several seconds
- Sufficient accuracy to repoint LAT
- I Other data as necessary to make repoint decision

™ On-Ground Automated

- **Uses real-time telemetry link**
- I GCN notifications
- I Two or more levels of time/accuracy

™ On-Ground Manual

- Human interaction to achieve best accuracy
- Available in 1-2 days

Burst Monitor Performance

- ™ Spectral coverage from a few keV to ~30 MeV (overlap with LAT)
- **™** Field of View: 8.6 sr (using AO definition) (LAT is 2.4 sr)
- ™ Sensitivity
 - ~0.57 photons cm⁻² s⁻¹ (nominal on-board burst trigger)
 - \sim 0.35 photons cm⁻² s⁻¹ (ultimate 5σ sensitivity)
- ™ On-board location accuracy <15° for most bursts
- ™ Mass: 54.5 kg (20% contingency, mounting hardware not included)
- **™** Power: 17.8 watts (based on BATSE, without contingency)
- ™ Telemetry rate: 4 kbps (nonburst), 9 kbps burst

Continuous Data

™ Background spectra (BSPEC)

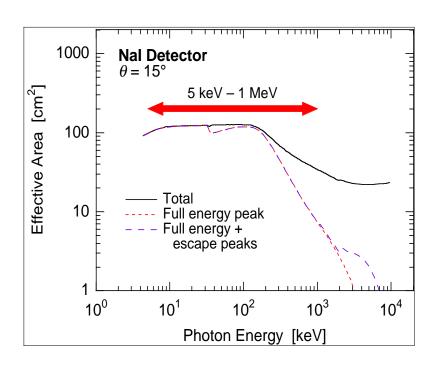
- 1 128 energy channels
- 8 s time resolution
- All detectors

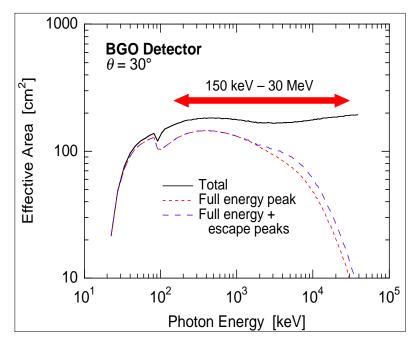
™ Background timing (BTIME)

- 4 energy channels
- 0.256 s time resolution
- All detectors

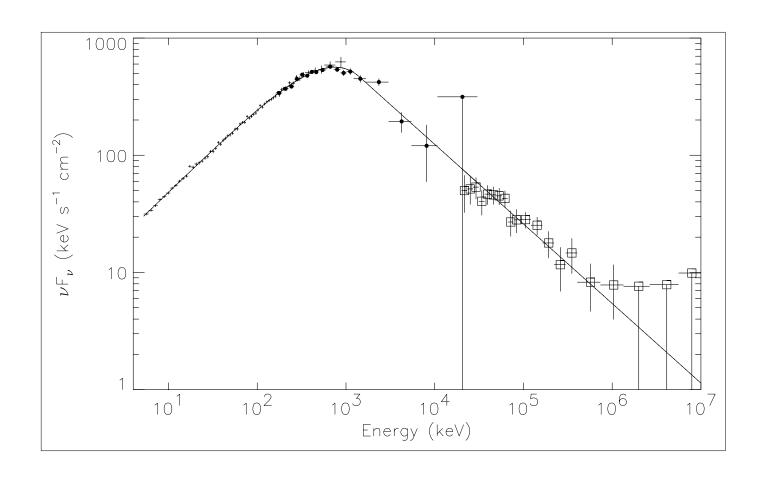
Burst Data

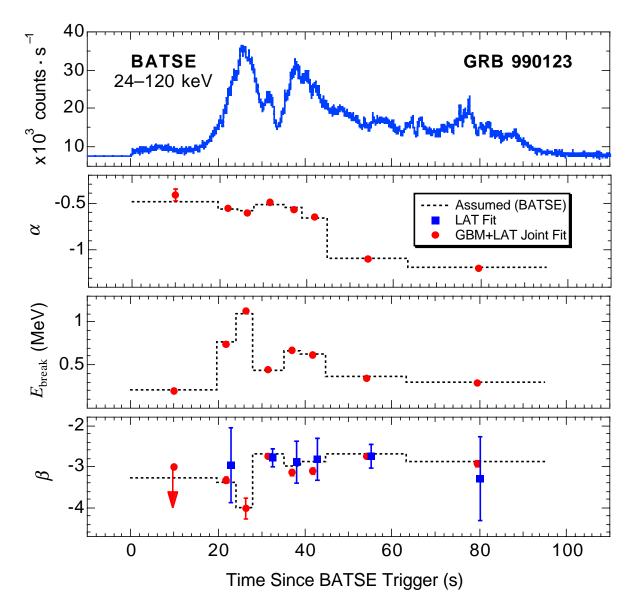
™ Time-Tagged Event (TTE)


- 1 128 energy channels
- 1 5 μs time resolution
- $\sim 10^6$ events
- ∼ 50 s pretrigger
- selected detectors
- bursts only


™ Trigger Data (TRIGDATA)

- Onboard and real-time telemetry link
- Locations
- **I** Spectral information
- Other information as required by the LAT
- Detector rates and ancillary data for automated ground locations


Simulated Instrument Performance



Simulated Spectrum of GRB 940217

GRB 990123 Simulation: LAT + GBM

Science Investigation

- Time-resolved spectroscopy of GBM triggered bursts using GBM and LAT data.
- ™ Generation of GRB locations within seconds for repointing, detection in LAT, and dissemination to other observers.
- **™** Production of a burst catalog.
- ™ Untriggered burst search.

SWG Issues

- **™** GBM sensitivity/FOV trade.
- **™** Policy on repointing LAT.
- **™** Data to be provided on-board to LAT.
- ™ Coordination of rapid alerts.
- ™ Coordination of analyses of joint spectra.